Algarly Tat

SP.4.7. Alunos do século XXI! Que matemática? Que metodologias? Que instrumentos?

Emília Creus Verónica Lopes Paulo Semião AE Tomás Cabreira, Faro AE Poeta António Aleixo, Portimão FCT UAIg

Atividade direcionada para o GeoGebra

Módulo A6: Taxa de Variação

Curso Profissional do11º Ano

Atividade: "Bola no ar"

Uma bola é lançada de baixo para cima. A altura, f(t), em metros, a que a bola se encontra relativamente ao solo, t segundos após o lançamento é dada por: $f(t) = -4t^2 + 16t + 1$.

- 1. Determina a velocidade média da bola nos intervalos [1; 1,1], [1; 1,01] e [1; 1,001].
- 2. Na questão anterior foi pedida a velocidade média da bola em intervalos do tipo [1,1+h], onde h representa um número positivo cada vez mais próximo de zero. Mostra que:
 - **2.1** $\frac{f(1+h)-f(1)}{h}$ pode ser uma expressão simplificada para a velocidade média da bola no intervalo [1, 1+h], onde h representa um número real positivo.
 - **2.2** $\frac{f(1+h)-f(1)}{h}$ também pode ser uma expressão simplificada para a velocidade média da bola em intervalos do tipo [1+h,1], onde h representa um número real negativo. (**Nota**: 1+h < 1, visto que h < 0)

3.

3.1 Utilizando a expressão encontrada em **2.**, preenche a tabela seguinte.

h	-0,1	-0,01	-0,001	0	0,001	0,01	0,1
f(1+h) - f(1)							
h							

- **3.2** Atendendo aos valores obtidos na tabela, conjetura um valor para a expressão $\frac{f(1+h)-f(1)}{h}$ quando h tende para zero.
- **4.** Estima o valor da velocidade da bola no instante t=1.

<u>Definição</u>: Designamos por taxa de variação da função f em x=a, o valor para que tende a taxa média de variação quando a amplitude do intervalo [a,a+h] tende para zero, isto é, o limite da taxa média de variação quando h tende para zero, ou ainda, o limite de $\frac{f(a+h)-f(a)}{h}$ quando h (positivo ou negativo) tende para zero.

Este valor é também chamado derivada da função f no ponto de abcissa a, designado por f'(a) e abreviadamente representado como $\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$.

SP.4.7. Alunos do século XXI! Que matemática? Que metodologias? Que instrumentos?

Emília Creus Verónica Lopes Paulo Semião

AE Tomás Cabreira, Faro AE Poeta António Aleixo, Portimão FCT UAIg

Atividade direcionada para o GeoGebra

Módulo A6: Taxa de Variação

Curso Profissional do11º Ano

Na atividade "Bola no ar", a função $f(x) = -4x^2 + 16x + 1$ relacionava a altura a que a bola se encontrava do solo com o tempo decorrido após o seu lançamento.

Percorre as seguintes etapas recorrendo ao programa de geometria dinâmica GeoGebra e, de seguida, dá resposta às questões apresentadas.

Etapas:

- i. Introduz, no campo "Entrada", a expressão $f(x) = -4x^2 + 16x + 1$.
- ii. Seja A o ponto de abcissa 1 da função f. Marca o ponto A no GeoGebra. Para isso, coloca no campo "Entrada" a expressão "A = (1, f(1))".
- iii. De seguida, define um seletor $\frac{a-2}{4}$, atribui-lhe o nome h e no campo "Incremento" coloca 0,001. Os valores máximo e mínimo do intervalo do selector podem ser, respetivamente, 1 e 1.
- iv. Define o ponto genérico B, pertencente ao gráfico da função f e associado ao seletor criado. Para isso, no campo "Entrada" coloca o comando "B = (1 + h, f(1 + h))".
- v. Constrói a reta AB recorrendo à ferramenta "Reta definida por dois pontos"
- vi. Utilizando a ferramenta "Tangentes" traça uma reta tangente ao gráfico da função no ponto A.
- 1. Geometricamente, a taxa média de variação de uma função f no intervalo [1,1+h] representa o declive da reta secante ao gráfico da função f, e que passa pelos pontos A(1,f(1)) e B(1+h,f(1+h)).

Recorrendo ao seletor, determina o declive da reta AB para h=0.1; h=0.01 e h=0.001. Compara os valores obtidos com os valores encontrados na pergunta **3** da **Atividade "Bola no ar"**. O que podes concluir?

- **2.** De que valores se aproxima o declive da reta AB à medida que h tende para zero?
- **3.** Sabe-se que $m_{AB}=t.\,m.\,v._{[1,1+h]}=rac{f(1+h)-f(1)}{1+h-1}=rac{f(1+h)-f(1)}{h}$.

Por outro lado, como podes constatar graficamente, quando h tende para zero, a reta AB torna-se tangente ao gráfico da função f, no ponto A.

Desta forma, o declive da reta tangente ao gráfico de f no ponto A será dado por:

$$m = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

Relaciona a expressão obtida para o declive da reta com a expressão da taxa de variação.

(Adaptação de uma das Atividades propostas no manual de matemática, Módulo A6, Taxa de Variação da Areal Editores)